If it's not what You are looking for type in the equation solver your own equation and let us solve it.
25g^2-16=0
a = 25; b = 0; c = -16;
Δ = b2-4ac
Δ = 02-4·25·(-16)
Δ = 1600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1600}=40$$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-40}{2*25}=\frac{-40}{50} =-4/5 $$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+40}{2*25}=\frac{40}{50} =4/5 $
| -n+3+6n=5(n+2)-7 | | 2+.16666666x=-4 | | 6w+3w+7w+-19w=-9 | | -3+z=12 | | 180-121=x | | -7(-6x+22)-6x=242 | | 81=8x | | 4g+20=2g+6 | | -5=9z+8z-2 | | 2g^2+27g-14=0 | | 10r=-120 | | 6(-1-3n)=-96 | | 4v-30=10 | | -1=-10-4x+7x | | -13=n-14 | | -7x+4(5x-22)=-10 | | 13x-11=14x+10 | | -14=2a-2-8 | | 3d^2-14d+15=0 | | 5(5+3n)=85 | | 105=9x-3 | | 6w+3w+7w+–19w=–9 | | 50x=(-84) | | 3q^2+13q+10=0 | | -2x+x3x=9 | | 68=2x-2(5x-10) | | 1/2x-1/3=-4 | | -10+4p=-6 | | -8+2s=10-4s | | v=512 | | 25x-3(3x-7)=20+11x | | -2(s+5)+10=2 |